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A complete understanding of how proteins fold, i.e. self-assemble
to their biologically relevant “native state,” remains an unattained
goal.1 Computer simulation, validated by experiment, is a natural
means to elucidate this. There is over a million-fold range in folding
rates, suggesting a possible diversity in mechanisms between slow
and fast folding proteins.2 Very fast (microsecond time scale)
folding proteins3,4 appear to fold via a large number of heteroge-
neous, parallel paths,5-7 potentially key for folding on such fast
time scales. Does the folding of much slower proteins change this
picture?

To date, the slowest-folding proteins folded ab initio by all-atom
molecular dynamics simulations with fidelity to experimental
kinetics have had folding times in the range of nanoseconds to
microseconds. These include the designed mini-protein Trp-cage
(∼4.1 µs),8 the villin headpiece domain (∼10 µs),9 a fast-folding
variant of villin (<1 µs),7 and Fip35 WW domain (∼13 µs).10 In
this communication, we report simulations of several folding
trajectories, each from fully unfolded states, of the 39-residue
protein NTL9(1-39), which experimentally has a folding time of
∼1.5 ms.11

MD Simulation. Trajectories were simulated via the Folding@
Home distributed computing platform12 at 300, 330, 370, and 450
K from native, extended, and random-coil configurations using an
accelerated version of GROMACS written for GPU processors,13

for an aggregate time of 1.52 ms. GPUs play a key role here,
allowing for dramatically longer trajectories than previously pos-
sible. The AMBER ff96 force field14 with the GBSA solvation
model15 was used, a combination previously shown to give good
results folding Fip35 WW domain,10 and shown to exhibit a good
balance of native-like secondary structure for a set of small helical
and �-sheet peptides studied by replica exchange.17

Prediction of ab Initio Folding and Folding Rates. We find
that the native state (taken from the N-terminal domain of the crystal
structure of ribosomal protein L918) is stable in this force field at
300 K, exhibiting decreasing stability with increasing temperature
(Figure 1a). Rmsd-CR distributions after 10 µs show well-defined
native and collapsed unfolded basins near 3 and 5 Å, respectively.
Of the ∼3000 trajectories started from unfolded (extended and coil)
states at 370 K (Figure 1b), two reach an rmsd-CR < 3.5 Å and
eight reach an rmsd-CR < 4 Å. No productive folding trajectories
were observed at lower temperatures, consistent with the enhanced
forward folding rate expected by Arrhenius kinetics. Higher
temperature trajectories (450 K) exceed the melting temperature
of NTL9 in the force field.

The observed number of folding events n is consistent with
expectations from a simple model of parallel uncoupled folding

simulations19 in which folding is modeled as a two-state Poisson
process: 〈n〉 ) ∫M(t)k exp(-M(t) kt) dt, is the number of simulations
that reach time t (Figure 1b) and k is the experimental folding rate
(∼640/s).11 This theory predicts (on average) ∼1.8 folding trajec-
tories for the amount of sampling performed, in agreement with
the two folding trajectories found in practice. Posterior distributions
of folding rates given the amount of simulation time and number
of folding trajectories were computed using a Bayesian approach,16

which yield expectation values within an order of magnitude of
the experimental folding rate.

In addition to native-like conformations, we see near-native
configurations, which show heterogeneity in hydrophobic packing,
most notably in alternative side chain arrangements in the �-sheet
structure (Figure 2). Most common of these is a non-native
hydrophobic core involving residues I4, I18, and I37 (which
normally contact the C-terminal helix in the full-length protein)
with F5 solvent-exposed.

Insight into Folding Mechanisms. To describe the kinetics and
mechanistic aspects of folding, we employ a new paradigm for
sampling the global free energy landscape of folding, using Markov
State Models (MSMs). MSM approaches, by automatically iden-
tifying a set of kinetically metastable states (such as foldons20) and
efficiently sampling transitions between these states, can model
long-time scale kinetics from much shorter trajectories.21-24

Our strategy for simulating slow-folding proteins is first to
generate an initial series of kinetically connected states from both
the folding and unfolding directions and then to use adaptive
resampling techniques25 to produce statistically converged estimates
of metastable basins and the transition rates between them. In the

† Department of Chemistry.
‡ Department of Structural Biology.
§ Biophysics Program.

Figure 1. (a) Distributions of rmsd-CR for native-state simulations of
NTL9(1-39) after 10 µs. The arrows indicate thresholds defined for the
native basin at 3.5 and 4 Å. (b) The number of parallel simulations M(t)
started from unfolded states at 370 K that reach time t. (c) Posterior
predictions of the folding rate given the amount of simulation time and
observed folding events for 3.5 Å (dashed) and 4 Å (solid) thresholds, using
uniform (black) and Jeffrey’s (gray) priors, using methods from ref 16. In
red is a Gaussian distribution representing the experimental rate mean and
standard deviation.
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remainder of this communication, we report progress toward the
first goal, by constructing an MSM from the entire set of 370 K
trajectory data,26,27 which we will use to seed future rounds of
transition sampling. While additional rounds of adaptive sampling
could likely aid in increasing the quantitative power of this model,
there are several notable observations which can be made with the
current data set.

Key to accurately identifying metastable states is the clustering
of trajectory conformations into microstates fine-grained enough
to be used for lumping into groups of maximally metastable
macrostates.26 100 000 microstate clusters were calculated using
an approximate k-centers algorithm,28 each with an average radius
of 4.5 Å rmsd-backbone. Lag times ranging from 1 to 32 ns were
used to build a series of MSMs. The implied time scales predicted
by these models (obtained by diagonalizing the rate matrix) show
a clear spectral gap separating the slowest relaxation time scale
from the rest, indicative of single-exponential kinetics (see Figure
S1). The implied time scale of the model levels off beyond a lag
time of ∼10 ns to an implied time scale of ∼1 ms, close to the
experimental folding time.

An important strength of MSMs is their ability to gain insight
at coarser scales by “lumping” the kinetic transitions into a simpler
model with fewer states. To gain a mesoscopic view of the folding
free energy landscape, we lumped our 100 000- microstate MSM
into a 2000-macrostate model. From this view, we find that the
metastable states are diffuse collections of conformations over which
multiple possible folding pathways can occur, indicating a vast
heterogeneity of folding substates that need to be understood in
greater detail. At the same time, we can identify highly populated
“native” (state n) and “unfolded” (state a) macrostates that dominate
the observed relaxation rates (Figures 3 and S2).

The 10 pathways with the highest folding flux from macrostate
a to n were calculated by a greedy backtracking algorithm (see
Supporting Information (SI)) from the macrostate transition matrix
using transition path theory29,30 (TPT). The diversity of pathways
demonstrates the power of the MSM approach: although we observe
only a few folding trajectories directly, a network of many possible
pathways can be inferred from the overlapping sampling of local
transitions.

While NTL9(1-39) folds quickly for a two-state folder, it is
similar in size to many ultrafast (submillisecond) folders that appear
to exhibit so-called “downhill” folding. Hence, we would like to
understand the structural features that limit the overall folding rate.
As in a macroscopic two-state model, the highest-flux pathways in
our mesoscopic model are afmfn and aflfn direct routes from
disordered to structured macrostates, reminiscent of nucleation-
condensation. These pathways by themselves, however, account
for only ∼10% of the total flux, and the structural diversity seen
in all pathways is reminiscent of more hierarchical folding models

such as diffusion-collision. Thus, we sought to more fully study
the 14 macrostates transited by the top 10 folding pathways.

To examine structural changes along the folding reaction, we
considered three main native structural elements: the central helix
(R), the pairing of strands 1 and 2 (�12), and the pairing of strands
1 and 3 (�13). To quantify the extent of native-like structuring for
each of these elements we calculated QR, Q�12, and Q�13, respectively
(see SI for details). The Q-value is a number between 0 and 1 that
quantifies the extent of native-like contacts. We then examined,
for each macrostate, the Q-values in relation to the pfold value
(committor), a kinetic reaction coordinate. The pfold value is
computed from the macrostate transition matrix.24,29,30

This analysis yields several key insights into the folding
mechanism of NTL9(1-39) on the mesoscale. We find the
“unfolded” state a is compact and contains a baseline level of
residual native-like structure, with QR near 0.5, and Q�12 and Q�13

near 0.2. In general, across the 14 macrostates studied, Q-values
increase as pfold values increase, although the relative balance of
QR, Q�12, and Q�13 varies, indicating pathway heterogeneity: i.e.,
native-like structures can form in different orders (Figures 4, S4,
and S5). An exception to this, however, is observed for �12 strand

Figure 2. (a) A snapshot from a folding trajectory (dark blue) achieves an
rmsd-CR of 3.1 Å compared to the native state (cyan). (b) Non-native (top)
and native-like (bottom) hydrophobic core arrangements observed in low-
rmsd conformations of folding trajectories. Highlighted are side chains of
residues F5 (magenta), V3,V9,V21 (tan), and L30,L35 (pink).

Figure 3. A 2000-state Markov State Model (MSM) was built using a lag
time of 12 ns. Shown is the superposition of the top 10 folding fluxes,
calculated by a greedy backtracking algorithm (see Supporting Information).
These pathways account for only ∼25% of the total flux and transit only
14 of the 2000 macrostates (shown labeled a-n, for convenient discussion).
The visual size of each state is proportional to its free energy, and arrow
size is proportional to the interstate flux.

Figure 4. The 14 macrostates involved in the top 10 folding pathways,
plotted along structural and kinetic reaction coordinates. The balance
between native-like helix and sheet structure is quantified by QR - (Q�12

+ Q�13)/2 (vertical axis), and progress along the folding reaction is quantified
by the pfold (committor) value (horizontal axis). It can be seen that the
“unfolded” state (a) contains residual native-like helical propensity, and
that pathways involving various ordering of native-like helix and sheet
formation are possible.
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pairing. Only for macrostates with pfold > 0.5 (states g-n) does
appreciable �12 strand pairing occur (Figure 5). This suggests that
the formation of a local strand pair (�12), rather than a nonlocal
strand pair (�13), is rate-limiting. This effect is not predicted by
strictly topological models of folding in which loop closure entropy
loss dominates31 but instead may result from sequence-specific
details. Unlike the �13 strand pair, which has a small interaction
surface stabilized by hydrophobic contacts, the �12 hairpin contains
seven of the protein’s eight lysine residues and three of its five
glycine residues in a flexible loop region, features which may imbue
�12 with larger barriers to folding. This proposed role of �12 is also
consistent with the large changes in kinetics and stability seen
experimentally for mutations in the �12 hairpin.11

It is natural to compare our results with previous unfolding
simulations of NTL9(1-39) K12 M by Snow et al.32 In that work,
a detailed characterization of the transition state ensemble required
the definition of strand-pairing reaction coordinates corresponding
to �12 and �13 formation. In our MSM analysis, no such predefinition
is required. Snow et al. also note the difficulty in resolving kinetic
intermediates not captured by the chosen order parameters. Indeed,
our structural analysis can resolve subtle kinetic intermediates within
the native basin, corresponding to alternative rearrangements of the
�12 hairpin loop (Figure S6).

Conclusion. The above results suggest that existing force field
models using implicit solvent are indeed accurate enough to fold
proteins ab initio at long time scales (milliseconds), opening
the door to simulating more structurally complex proteins.
Moreover, our work demonstrates that there need not be a single
pathway or single, dominant mechanism for the folding of a
given protein: since the theories proposed for how proteins fold
are based on broadly relevant physical principles, it is natural
to imagine that multiple mechanisms could be simultaneously

present but that the sequence of the protein, coupled with the
chemical environment, would control the balance to which each
mechanistic pathway is seen.
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Figure 5. Q-values, which capture the extent of native-like structures,
plotted versus pfold (committor) values. The lines are to guide the eye.
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